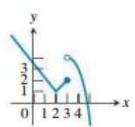
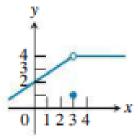

A --- 1053A A TOTAL SHIE A

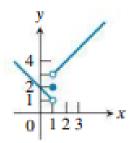
In Exercises 27-30, use the given graph to find the limits or to explain why the limits do not exist.



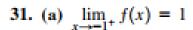
- (b) $\lim_{x\to 2^+} f(x)$
- (e) $\lim_{x \to 2} f(x)$


28. (a)
$$\lim_{x \to 3^{-}} f(x)$$

- (b) $\lim_{x \to 3^+} f(x)$ (e) $\lim_{x \to 3} f(x)$


29. (a)
$$\lim_{x \to 3^{-}} f(x)$$

- (b) $\lim_{x \to 3^+} f(x)$
- (e) $\lim_{x \to 3} f(x)$



30. (a)
$$\lim_{x \to 1^{-}} f(x)$$

- (b) $\lim_{x \to 1^+} f(x)$
- (e) $\lim_{x\to 1} f(x)$

In Exercises 31 and 32, the graph of a function y = f(x) is given. Which of the statements about the function are true and which are false?

(b)
$$\lim_{x\to 0^{-}} f(x) = 0$$

(e)
$$\lim_{x\to 0^-} f(x) = 1$$

(d)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} f(x)$$

(e)
$$\lim_{x\to 0} f(x)$$
 exists.

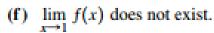
(g)
$$\lim_{x\to 0} f(x) = 1$$

(i)
$$\lim_{x \to 1} f(x) = 0$$

(f)
$$\lim_{x \to 0} f(x) = 0$$

(h) $\lim_{x \to 1} f(x) = 1$

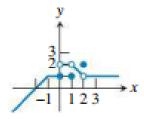
$$(\mathbf{j}) \lim_{x \to 2^{-}} f(x) = 2$$


32. (a)
$$\lim_{x \to -1^+} f(x) = 1$$

(b)
$$\lim_{x\to 2} f(x)$$
 does not exist.

(e)
$$\lim_{x\to 2} f(x) = 2$$

(d)
$$\lim_{x\to 1^-} f(x) = 2$$


(e)
$$\lim_{x \to 1^+} f(x) = 1$$

(g)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x)$$

(h)
$$\lim_{x \to c} f(x)$$
 exists for every c in $(-1, 1)$.

(i)
$$\lim_{x \to c} f(x)$$
 exists for every c in $(1, 3)$.

